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A theory for the generation of current in a toroidal plasma by radio-frequency waves is presented.
The effect of an opposing electric field is included, allowing the case of time varying currents to be
studied. The key quantities that characterize this regime are identified and numerically
calculated. Circuit equations suitable for use in ray-tracing and transport codes are given.

I. INTRODUCTION

In recent years there has been considerable interest in
generating steady-state currents in a plasma with rf waves.
In particular, it was predicted' that these currents could be
efficiently generated by waves having phase velocities sever-
al times the electron thermal speed. This prediction has been
confirmed by numerous experiments in which the current
was driven by lower-hybrid waves. These results allow us to
contemplate a steady-state tokamak reactor in which the to-
roidal current is driven by lower-hybrid waves. This is an
attractive proposition not only because of the advantages
inherent in steady-state operation {less thermal stress, higher
duty cycle, etc.), but also because it opens up the possibility
that the Ohmic winding of the tokamak can be eliminated
entirely, leading to a cheaper and more compact reactor.
This latter possibility can be realized if rf waves are success-
ful not only in sustaining the plasma current “steady-state
current drive,” but also in increasing the plasma current “rf
current ramp-up.” In fact, experiments have demonstrated
that this, too, is possible. From a theoretical point of view,
the important additional ingredient in these experiments is
the dc electric field, which opposes the increase of the plasma
current. The electric field is also present in schemes where
the rfis used to recharge the transformer at constant current.

Recently, we presented a theory for rf current drive in
the presence of an electric field.” This theory predicted that
rf energy could be efficiently converted to poloidal field ener-
gy if the wave phase velocity were approximately equal to the
electron runaway velocity. This theory has been compared®
with data from the Princeton Large Torus (PLT) experi-
ment,* and excellent agreement is found. In Ref. 2 the linear-
ized Boltzmann equation was approximately solved by inte-
grating the corresponding Langevin equations using a
Monte Carlo method. In this paper we use a more elegant
theory to calculate the efficiency of the current ramp-up
based on an adjoint formulation for the Boltzmann equa-
tion.> Although the limits of validity of this theory are the
same as for Ref. 2, this theory is more amenable to accurate
evaluation on a computer, and it is more easily extended to
include effects that are omitted here.

Let us begin by reiterating the physical picture given in
Ref. 2. Consider an electron traveling in the positive direc-
tion at several times the thermal speed and which has just
absorbed an incremental amount of rf energy. Suppose there
is an electric field tending to decelerate this electron. The
question is: Where does this incremental energy end up? If

180 Phys. Fluids 29 (1), January 1986

0031-9171/86/010180-13$01.90

the electron is slow compared to the runaway velocity, the
electron slows down primarily because of collisions and so
the rf energy goes to bulk heating. On the other hand, if the
electron is fast, the electron is slowed down by the electric
field. In this case the rf energy is coupled to the plasma cir-
cuit and appears as poloidal field energy. Unfortunately, fast
electrons have a high probability of pitch-angle scattering
into the reverse direction and running away. A runaway
electron drains energy out of the electric field, leading to a
degradation of the ramp-up efficiency. However, there is a
window around the runaway velocity where the electrons
are slowed down principally by the electric field and yet
where the probability of running away is very small. This is
the favorable regime in which rf energy can be efficiently
converted to poloidal field energy.

From the foregoing discussion we see that two ingredi-
ents are needed for an accurate theoretical treatment of this
problem. First, the electric field must be treated as large. In
the efficient regime the force on the electron caused by the
electric field must be comparable to that caused by colli-
sions. Seécond, a two-dimensional treatment is required.
Analyses based on a one-dimensional Fokker-Planck equa-
tion do not predict the important physical phenomenon of
rf-generated reverse runaways.

We briefly review the history of theoretical studies of
current drive in the presence of an electric field. The earliest
theoretical studies® of lower-hybrid current drive assumed
that there was no electric field in the plasma. This is the
appropriate limit for a steady-state reactor. However, some
of the early experiments conducted to verify the predictions
of the theory were conducted in regimes where the Ohmic
electric field was still present. This prompted a series of pa-
pers® ~1° dealing with rf current drive in the presence of an
assisting electric field (i.e., the electric field and the rf both
accelerate the electrons in the same direction ). The principal
focus of these papers was the calculation of an enhanced
runaway rate when the phase velocity of the waves is in the
neighborhood of the runaway velocity. An opposing electric
field was treated by Borrass and Nocentini'' within the
framework of a one-dimensional Fokker—Planck analysis. A
similar model has been employed more recently by Liu et
al.'*> As noted above, such an analysis cannot include rf-
generated reverse runaways. Also, because of the crudity of
the one-dimensional equation, the results are only accurate
to within a factor of order unity even when no runaways are
generated. A two-dimensional treatment of the problem in
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the small electric field limit has been given by Start!? for the
case of current drive by electron-cyclotron waves. This work
neglected electron—electron collisions. This defect was re-
moved and the results generalized to arbitrary current-drive
methods by Fisch'¢ employing an adjoint formulation. This
work yields accurate results when the electric field is small.
However, the results are inapplicable in the regime of effi-
cient ramp-up where the phase velocity is comparable to the
runaway velocity. Our earlier paper * was the first to com-
bine a two-dimensional treatment with a large electric field.
This paper allowed an accurate calculation of the ramp-up
efficiency in cases of practical interest, and identified the
regime in which high efficiencies can be expected. The pres-
ent work is a continuation and expansion of that earlier pa-
per. Besides using the more sophisticated method® for solv-
ing the Boltzmann equation, we endeavor to give the results
in a form that allows both easy comparison with experiments
and easy implementation within the framework of ray-trac-
ing or transport codes.

The paper is organized as follows. We begin with the
linearized Boltzmann equation for the perturbed electron
distribution in the presence of an electric field and an rf
source (Sec. II). Some approximations and normalizations
are made to reduce this equation to a more manageable form.
The use of the adjoint method?® for solving the resulting equa-
tion is described (Sec. III). Next (Sec. IV) the adjoint equa-
tion is solved numerically to give the runaway probability
and the Green’s function for the current. The latter quantity
is reduced to a simple form that involves just two functions
of velocity. An expression for the total current density is
given (Sec. V), and this is put into a form that is easy to
calculate. How the rf-driven current interacts with the elec-
tric field to produce poloidal field energy is considered (Sec.
VI), and the results are applied to experiments.

il. BOLTZMANN EQUATION

Consider a uniform electron-ion plasma, initially at
equilibrium. For 7> 0, it is subject to an electric field E(¢)
and a wave-induced flux S(v, #). We will take the ions to be
infinitely massive, so that they form a stationary background
off which the electrons collide. If the electric field and the
wave-induced flux are weak enough, the electron distribu-
tion remains close to a Maxwellian for & S T, where & is
the energy of an electron }mv? Substituting f=f,,

+ f; into the Boltzmann equation for the electron distribu-
tion fand linearizing then gives

f1+qE"’ S Fi=C()
3.« gBlt)
~.s -2 fm
n & T
‘[7*(7‘7)?]fm' @
where

fon = n(m/27T "% exp( —
and

Clfy=

%/T)

ClfiSm) + ClLs 1+ CLS)
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is the linearized collision operator. Here g, m, n, and T are
the electron charge, mass, number density, and temperature.
Note that ¢ carries the sign of the electron charge (i.e.,
g= —e).

This equation is to be solved with initial condition
Jfilv, t = 0) = 0. We demand that the subsequent evolution of
/1 be such that it be orthogonal to 1 and #, i.e., that it have
zero density and energy. The zero-density condition is satis-
fied with 7# = O since all the terms in Eq. (1) are particle
conserving. The zero-energy condition gives an equation for
the time evolution of T:

3

—{n——fms ‘vd>+E- fwﬁd’

The two terms on the right-hand side represent the heating
resulting from the waves and E - J.

We now make three simplifying assumptions: we as-
sume that f; is azimuthally symmetric about the ambient
magnetic field; we take the electric field to be constant and in
the direction parallel to the magnetic field E = E¥; and we
restrict our attention to those cases where S is only finite
where v > v,, with v> = T'/m the thermal velocity. We may
then solve Eq. (1) using the high-velocity form for C:

cn=r(For+ EZ L 1y 2 y),

au u
where 4 = v, /v, " =ng*In A/41re§ m?, ¢, is the dielectric
constant of free space, In A is the Coulomb logarithm, and Z
is the effective ion charge state. We have included pitch-
angle scattering and frictional slowing down, but ignored
energy diffusion. In the problem of steady-state current
drive," the energy diffusion term introduces corrections of
order (v,/v)>. Another term neglected in this approximate
collision operator is the effect of the Maxwellian colliding off
the perturbed distribution C( f,,, f). The corrections result-
ing from this term'® are of order (v, /v)>. With these approxi-
mations the collision operator does not depend on the elec-
tron temperature 7. Formally, we may derive the form for C
by taking T — 0. In this limit we have f,, — nd(v).

It is convenient to introduce some normalizations. The
runaway velocity v, is that velocity at which collisional fric-
tional force equals the acceleration caused by the electric
field:

v, = — sign(gE WmT/|qE |.
Notice that the sign of v, is opposite to the direction in which
electrons run away. The Dreicer velocity'® is given by
— 2+ Zv,. Similarly, we define a runaway collision fre-
quency

v, =T/|v, %
The normalized time and velocity are given by

T=v,t
and
u=v/0,.

The components of v have to be normalized with care:
u, =v,/v,|, 4y =v,/v,, and u =v/|v,|. This implies that
u /u = sign(v, v, /v so that the conversion of the pitch-an-
gle variable i in v space to that in u space involves multipli-
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cation by sign(v, ). Other quantities are normalized in a simi-
lar way; however, we shall use the same symbols as for the
unnormalized quantities. Thus the distribution functions f
and f,, are normalized to n/|v, |?, the rf-induced flux S to
nv,v,/|v, |3, etc. Under this normalization, Eq. (1) then be-
comes

d d
—_ D(fij= ——-8, 2
5t 2 pn 2)
with f,(u, 7 = 0) = 0 and the operator D defined by
J 1 9 1+2Z2 4 2 0
D= - — o — — — (1 —p¥)—.
duy u du 2 du (1=w) du

Equation (2) is singular at the origin. However, because f] in
Eq. (2) describes a physical particle distribution, it obeys a
particle conservation law near the origin. We therefore re-
quire that, close tou = 0, fi(u) = N (r)6(u) with ¥ (0) = Oand

dN !
. 2w filu, pidp.

— = lim
T u—0J_

Equation (2) depends only on a single parameter Z. The de-

pendence on the electric field E can be normalized away,

since the electric field defines the only natural velocity scale

in the problem v, .

Equation (2) is amenable to various methods of solution,
and it is instructive to review these before describing the
method used here. The most straightforward approach is to
integrate Eq. (2) directly on a computer. This method allows
S to be determined directly in terms of the electron distribu-
tion /. However, a thorough understanding of the problem
requires that many different forms of S be used. Therefore
this procedure is costly because the several parameters used
to specify S must be scanned. This is essentially the method
adopted in the early numerical studies of steady-state cur-
rent drive by lower-hybrid waves.!’

The situation is improved to some extent by noting that
Eq. (2)is a linear equation for f;. It may be solved in terms of
a Green’s function g given by the equation

(7‘97_ + D)g(u, riu)=0, (3)

withg (u, 7 = 0 ; w’) = (u — u’). The electron distribution is
then given by the convolution

Si(w, 7) =Jqd7’fd3u’ S(w’, 7') -—a—'g(u, T—1u).
° Ju

This approach reduces the problem to the determination of a
single function g of two vector arguments (uand u’) and one
scalar argument (7). However, this is still a daunting com-
putational task.

A closely related technique is to formulate the problem
as a set of Langevin equations,'®

du 1

T T

4)

b

2
au _ A7) — 1—p
dr u
where the pitch-angle scattering is represented by the sto-
chasticterm 4 ( 7). Assuming that u( 7) = u and u( 7) =  are
given (i.e., nonstochastic), then A4 ( 7) satisfies
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A(n) = -1 +2)/4)p,

(5)
(A(T) A7) = [0+ Z2)/w)(1 —p)8(r —7),

where the angle brackets denote averaging over the ensemble
defined by all the realizations of 4. Consider following a
particular electron using Egs. (4). Suppose that the electron
is observed to travel with velocity u' at 7=0. Then
g(u, 7; u')d u is the probability that the velocity of the elec-
tron at time 7 is in the volume element d %u located at u. In
Appendix A it is shown that this conditional probability g
satisfies Eq. (3). Thus the solution to Eq. (3) can be found by
determining the distribution of a large number of electrons
obeying Egs. (4) with initial conditions with u(7=0) =u'.
Consequently, moments of g can be determined by ensemble
averages of the Langevin variables. For example, the current
given by Eq. (3) may be found by

fd3u up g(u,pu, 0, p0') = (u( ().

Equations (4) may be integrated numerically by noting
that

+ Ar
f A(7)Ydr

should be picked from an ensemble with mean

~(1+ Z)uA7/u® and variance (1 + Z)(1 — p?)Ar/4?,
where u and u are the values of those variables at time 7. As
long as Ar is sufficiently small, further details about the dis-
tribution of 4 are unimportant.

Now Egs. {4) are the equations solved in our earlier pa-
per.? This shows the exact equivalence between the approach
adopted there and that employed in the present work. Be-
cause the Langevin equations describe the electron behavior
in a slightly more physical manner, they often help in the
interpretation of the solutions to the Boltzmann equation.
This is especially true when some electrons run away. The
Langevin equations are also very easy to solve numerically
by a Monte Carlo method (as was done in Ref. 2}, although
their solution tends to be much more costly than just solving
Eq. (3) directly.

Equations (4), however, may be easily solved analytical-
ly in the limit « — O (this is equivalent to taking the limit
E — 0). Taking an ensemble average of the equations, we
obtain

Note that « is not a stochastic variable in this limit. Conse-
quently, the hierarchy of moment equations may be closed at
this point. These are the slowing-down equations solved by
Fisch and Boozer'® to give the current moment of electron
distribution {uu) = u( ). This shows that the approach
used in that paper is equivalent to solving the Boltzmann
equation.

1. ADJOINT METHOD

The methods for solving the Boltzmann equation de-
scribed in the previous section all entail a large amount of
computation. (An exception is the limit £ — O, when the
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ensemble-averaged Langevin equations can be solved ana-
Iytically.’®) The problem with these methods is that they are
all capable of giving the electron distribution function f;.
Since, in many cases, we are only interested in specific mo-
ments of £, we may hope to reduce the computational re-
quirements substantially by using a method that gives only
those specific moments. Suppose we wish to determine a par-
ticular moment of /|, namely,

H(7)= fd3u ho(n) fi(n, 7).

[For instance, the current density would be given by Ay(u)
=u;.] Let us define the corresponding moment of the
Green’s function:

hw,7)= fd 3u hyu) glu, 7; w'). (6)

The moment H is then given in terms of 4 by

H(r)=J:dr' f d*uS(u, r')-fu-h(u,f—f'). (7)

What is needed is some method of calculating / that
does not involve finding g. This is provided by the adjoint
formulation of Fisch.> He shows that 4 (u, 7) satisfies

a

——h+D*h)=0, (8)
ar
with 4 (n, 7 = 0) = Agu) and the operator D * defined by
J 1 4 1+Z 4 2 0
D=2 - %2 T2 9 qn_ 2.
A +u2 du 2u° a,u( ”)a,u

The singularity at the origin is handled by the boundary con-
dition 4 (w = 0, 7) = 0. The operators D and D * are adjoint
operators, so that

f (hD(f) — D * )ld u =0

for all f(u) and A (u) satisfying f(u — ) =0 and 4 (u =0)
=0.

Similar techniques were introduced earlier by Antonsen
and Chu® and by Taguchi®' for the study of steady-state
current drive. The significant improvements afforded by
Ref. 5 are the ability to determine arbitrary moments of f;
and the inclusion of the time dependence of f;. Both of these
are important in the problem of current ramp-up.

From the relation between the two Green’s functions A
and g, we see that 2 has a simple interpretation. Equations
(3) and (4) describe the evolution of a group of electrons
released at 7 = 0 at velocity u'. Let us suppose that we are
interested in the current density so that 4,(u) = u;. Then
h(u', 7) gives the mean current carried by those electrons at
time 7 later. How Eq. (8) works is easily seen by taking
u > 1 so that the electron only experiences the electric field.
In the Boltzmann equation the electrons have slowed down
tou’ — 7 @i at time 7. Correspondingly in the adjoint equa-
tion, the initial condition A, is transported in the reverse
directionso that #(w’, 7) = ho(w’ — 7). Thus at time 7 we
are provided with information about the electrons in their
current location.

Solving the Boltzmann equation by means of the adjoint
formulation results in a great simplification of the problem.
The adjoint equation (8) is an equation of equal complexity to
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the original Boltzmann equation (2). However, by solving
Eq. (8) for a particular initial condition, we can find the cor-
responding moment of f; using Eq. (7) for any driving
term S.

The proof that 4 is given by Eq. (8) is most easily carried
out by assuming that Eq. (8) holds and then by proving that 4
is related to the general Green’s function g by Eq. (6). Con-
sider the equation for g(u, 7'; u’),

(_(9_ +D ) glu, ;u')=0.

ar

We multiply this equation by 4 (u, 7 — 7'), integrate over all
velocity space, and use the adjoint relation between D and
D * to give

fd3u hlu,7—17) —a—,g(u, 7;w)
or

+glu, 7;0')D*h(w, 7—7)=0.

Substituting from Eq. (8) and integrating in 7’ from O to 7
gives

J.d3uh(u,7'—‘r’)g(u, ;') =0.

7=0
If we evaluate this expression using the initial conditions for
g and A, we obtain Eq. (6).

Up until now we have assumed that all the equations are
solved in an infinite velocity domain. This is not a convenient
formulation for numerical implementation where, necessar-
ily, we wish to solve equations in a finite domain. Here we
shall solve Eq. (8) only in a spherical domain ¥ such that
u <u,. We will choose u, to be sufficiently large that the
interesting physics where the electric field competes with the
collisions happens inside V. Outside V collisions may be ig-
nored and the electrons are merely freely accelerated by the
electric field. We must impose boundary conditions on Z,
the boundary of V. Again we follow the treatment given in
Ref. 5. We begin by noting that both Eq. (2) and Eq. (8) are
hyperbolic in the u direction. The boundary therefore di-
vides into two pieces, depending on whether the characteris-
tics enter or leave the domain. We define X, (resp. X, ) as
that portion of £ on which — u — 1/v? <0 (resp. >0). The
characteristics of Eq. (2) enter ¥ on X,, and leave on =_,,
while those of Eq. (8) enter ¥ on =, and leave on Z,,.
Boundary conditions must be specified where the character-
istics enter the domain V. For u,, sufficiently large, the solu-
tion beyond £ may be determined by ignoring collisions.
Thus

Silw,7)=filu+78,0)=0
foruon X, and

hw7)=h(@—7d,0)=hu—7a))
foruon = .. (If energy scattering had been included in the
collision operator, the equations would revert to parabolic,
and boundary conditions would have to be specified over the
whole of . However, there would be a boundary layer
where the characteristics of the approximate equations are
outgoing, and the boundary conditions here would only
weakly affect the solution in the interior of V.)

Although Eq. (8) was derived under the simplifying as-
sumptions that the electric field was constant and the high-
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velocity form of collision operator is valid, the adjoint meth-
od as described in Ref. 5 applies equally well without such
restrictive assumptions. Thus the equation adjoint to Eq. (1)
reads’

(_3__ L=t “a——ct)h(v,t’;t)qu+qz €,
av
)

where C * is the operator adjoint to C. Since the full linear-
ized collision operator is self-adjoint, we have
C*h)=C(fnh)/f,. Equation (9) is to be solved with the
initial condition A (v, ¢’ = 0; ) = hy(v). We restrict f,, 4 to
being orthogonal to 1 and & and ¢, and g, are chosen to
ensure that this condition on f,, h remains satisfied given
that it is satisfied initially. It can then be shown® that

f dv i, £ halv)

=fdt’fd3vs*(v,t’)- O hwr—t51),  (10)
0 v

where S, (v, 1) = S(v, 1) + [gE(#)/m] f,,. This equation
will enable us to incorporate the effects of a slowly varying
electric field into our analysis. It also makes explicit the ad-
ditive nature of those effects caused by the electric field alone
(i.e., with S, = S). Of course, the effects caused by the elec-
tric field alone are well studied and give rise to phenomena
such as the Spitzer-Hirm conductivity ?* and runaways.*¢

IV. SOLUTIONS TO THE ADJOINT EQUATION

Moments of the electron distribution f; can now be cal-
culated by solving Eq. (8) with the corresponding initial and
boundary conditions. In practice this procedure still offers
us too much information. Both for a deeper understanding of
the underlying physics and for easy implementation in nu-
merical codes, the trick is to discover the few important
functions by which the major effects can be described. In this
section we determine those functions needed for an accurate
treatment of rf current ramp-up.

Let us suppose that rf flux is present only for some finite
time. Electrons obeying Eq. (2) then eventually suffer one of
two fates. Either they run away under the influence of the
electric field #; — — o, or else they collapse into the elec-
tron bulk ¥ — 0. We classify these two groups of electrons as
“runaway” (subscript 7) and ““stopped” (subscript s), respec-
tively. In a real plasma, i.e., T # 0, even the bulk particles
will eventually run away. However, the time ¢, it takes for
these bulk electrons to run away is exponentially large, i.e.,
log t, ~(v,/v,)%. Our analysis is valid for times short com-
pared with the bulk runaway time.

Runaways are very important in the calculation of the
ramp-up efficiency because runaways gain energy at the ex-
pense of the poloidal magnetic field. Unless they are lost,
even a small number of runaways can greatly reduce the
ramp-up efficiency. Runaways may be defined as those par-
ticles with # > u, for r — 0, where u, is some arbitrary pos-
tive speed. (The number of runaways is independent of u,,.)
Therefore, their number is given by Eq. (7), with 7— o
and k,(u) = 1 for u > u, and O otherwise. The Green’s func-
tion for the runaway number is given by R(u)
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FIG. 1. The runaway probability R (u) for Z = 1. Parts (a) and (b) show R on
two different scales. In (a) the contours are equally spaced at intervals of
0.05. In (b) the seven lowest contours are geometrically spaced at intervals of
10"/? between 10~ and 10~ ; the remaining contours are equally spaced at
intervals of 0.05 as in (a).

= h(u, 7 — « ), where R obeys
D*R (u)) =0, (11)

with boundary condition R (u) = 1 on X, . This function is
the “runaway probability,” the probability that an electron
initially at u runs away under the combined influence of the
electric field and collisions.

Equation (11) was solved numerically with the bound-
ary atu, = 10. A term R /37 was included on the left-hand
side, and the resulting equation was integrated until 7 = 100.
A spherical {u, @ = arccos u) grid was used with a mesh size
of 500 < 100. The equation was integrated with an alternat-
ing direction implicit (ADI) scheme with a time step
At =0.01. The same method was used to solve the other
equations given below.

In Fig. 1 we plot R(u) for Z = 1. For u < 1, R is identi-
cally zero because the magnitude of the electrical force is less
than that of the frictional force. One of the most important
applications of these results is to drive current by lower-
hybrid waves. In this case S is in the parallel direction and is
localized near u;, = 0. Therefore we need only know
R(uy, u, = 0), which s plotted in Fig. 2 forZ=1,2,5,and

10+ SR OR
H ‘I:
o.al\\\i\‘ o /’j
\ 2:=1 / "
061
1 /
RoA_ ) / //}/t
021 2! f
£ ERCREA

FIG. 2. The plot ofR(u",ul =0) forZ=1,2,5, and 10.
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FIG. 3. The current j(u,7) for v = 5 and Z = 1; (a) the total current  ; (b)
the stopped current j;; (c) the runaway current j,. For u = 5, approxi-
mately 32% of the electrons run away.

10. From this plot we see that we can effectively avoid the
creation of runaways by operating with waves having phase
velocities that lie in the range 0 <z S 1.5.
The next important quantity to determine is the current
density carried by f;. This is given (in units of gnv, ) by Eq.
(7) with hg(u) = . The Green’s function for the current
Jj (u, 7) istherefore given by d j/dr + D *( j) = 0 with initial
condition j(r=0)=u;, and boundary condition
Jj=u, — ronZ,,. Thisisthe mean current (in units of gv, )
carried by an electron initially at velocity u. In Fig. 3(a) we
plot j (u, 7) as a function of 7 for u = 5ii; and Z = 1. Be-
cause the presence of runaways leads to a secular behavior
(j~7) for large times, it is helpful to distinguish the current
carried by stopped and runaway electrons. We write
j(u, 7)=(1— R @)j,(u, 7) + R (u)j,(u, 7).

The quantity j; (resp. j,) is the mean current carried by an
electron given that it eventually stops (resp. runs away). An
electron at velocity u runs away with probability R (u). Thus
itcontributes(1 — R (u))u, tothestopped currentand R (u)u
to the runaway current. These quantities are therefore the
initial conditions to the adjoint equations for (1 — R ) j; and
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R j,, respectively, so that
(& +p#) =R =(Z+0%)R) =0,
ar ar
with ji(r=0)=j,(r=0)= u and j,=j, =u —7 on
zout'

The stopped and runaway currents j; and j, are plotted
in Figs. 3(b) and 3(c) for the same case as Fig. 3(a). Evidently
Js vanishes for 7 — o (since the electrons cease to carry any
current once they are stopped). The time it takes for elec-
trons to be stopped is of the order of . Assuming that this
time is short compared to the time scale for the variation of
the rf flux S, we may replace j (u, 7) by W, (u)d(r), where
W, (u) = §§ j,(u, 7)dr. The equation for W, is obtained by
integrating Eq. (8) over time to give
D*[(1 — R (w) W;(u)] = (1 - R (u)y, (12)
with(l — R) W, =0on X, . Here W, can be interpreted as
the energy (in units of mv?) imparted to the electric field by
an electron as it slows down. In Fig. 4(a) we plot W, (u) for
Z = 1. In the limit 4, — o, collisions are extremely weak,
and all of the kinetic energy of the stopped particles goes into
the electric field, i.e.,

W,(u" —> o0, U; =O)—>£uﬁ

In the limit u < 1, the electric field weakly perturbs the elec-
tron motion. Then, W, is given by the theory of steady-state
current drive,'*?° and corrections linear in the electric field
are given by the hot conductivity.!* In our notation these
results may be summarized by

(13)

4 2y,,6

Wiu< 1) = uu' 242+ 3utu '
5+4Z 33+Z){5+2)

This function is plotted in Fig. 4b). (An approximation to

FIG. 4. The energy imparted to the electric field by the stopped particles
W, (u) for Z = 1. The innermost contours are equally spaced at intervals of
0.005 between — 0.05 and 0.05. The remaining contours are equally spaced
atintervals of 0.05. Part (a) shows the results of numerically solving Eq. (12);
part (b) shows W, from the hot-conductivity theory Eq. (13).
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FIG. 5. The function j, , (u) for Z = 1. The contours are equally spaced at
intervals of 0.25.

W, correct to order u'° is given in Appendix B.) This linear-
ized theory, however, is inapplicable for u ~ 1, and the be-
havior of this function is completely wrong for u 2 1.

Let us now turn to the contributions of the runaways to
the current. The leading order contribution toj, is — 7. Let
us therefore write

Jrw, )= —7+j,000) +jr(w, 7), (14)

where j/(r — )~ 1/7 and j,, may be interpreted as the ef-
fective starting velocity for the runaways; see Fig. 3(c). The
function j, , is given by

D *(R (u)j,o(w) = R (w),

with boundary condition j,, = u; on Z,,,. This function is
shown in Fig. 5. For u » 1, the runaway electrons are only
weakly perturbed by collisions so that j,, (uj=u;. Close to
u = 1, collisions hold back the runaway electrons and j, , (u)
becomes large. However, it is not very important to know ,
and j, very accurately since they are usually dominated by
the first term in Eq. (14). We will approximate j, o (u) by %,
and will ignore j; (u, 7) to givej, (u, 7) = 4 — 7.

Finally, we can write the Green’s function for the cur-
rent in an expedient form as

Jjlu, )= (1 — R (u) W,(u)é(7) + R (u)(u; — 7). (15)

In this form it depends only on two scalar functions of u,
namely, R and W,. Approximate fits to these functions are
given in Appendix B. An easy but important generalization
is possible here and that is to allow a loss mechanism for
runaways. This is done by modifying suitably the term
u —T. For example, if the loss of runaways can be charac-
terized by a loss time 7, this term should be multiplied by
exp( — 7/ Tioss )-

Using this formulation, many other moments of f; may
be found. For example, we may wish to know the mean per-
pendicular energy of the runaway particles & ,, (in units of
muv?) as they leave the integration region V. (The loss rate for
runaways may depend on this quantity.) This is given by

D*R (u) & ,(w) =0,

with &,, =} u? on X, . (This result depends logarithmical-
ly on the value of u,.) We have plotted this in Fig. 6. For
electrons with #; >1 and 4, =0, &, is about 3. This re-
flects the necessity for the electrons to suffer appreciable
pitch-angle scattering if they are to run away.
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uy

FIG. 6. The perpendicular energy of the runaways & |, (u) for Z = 1. The
contours are equally spaced at intervals of 0.5.

V. CIRCUIT EQUATIONS

When rf energy is injected into a tokamak, it induces a
flux S of electrons in velocity space. The power deposited per
unit volume is then given by

Pult) = Jd3v mS(v,t)-v. (16)

Here p, S, and the other intensive physical quantities intro-
duced in this section also depend on position r. For brevity
this dependence is not shown in the arguments to these quan-
tities. This equation may be used in two ways. In detailed
studies of rf current ramp-up based, for instance, on a ray-
tracing model, we can estimate S(v,t) on each flux surface
by solving a one- or two-dimensional Fokker—Planck equa-
tion. Equation (16) then gives us the power deposition, p,;.
Alternatively, we can take the experimental measurements
together with an energy balance of the rf energy to give us an
estimate of p.;. This, together with an approximate knowl-
edge of where in velocity space the rf flux is localized, allows
us to determine S. In addition to causing power absorption,
the flux S leads to numerous other effects, such as rf-driven
current, rf-enhanced particle transport, etc. Here our pri-
mary concern is with the rf-driven current. From Eq. (10)
we see that this enters additively to the Ohmic current so
that the total current density is given by the constitutive
relation

J(t) = ot )E(t) + Jolt), (17)
where oft ) is the Spitzer-Hirm conductivity 2> for a Max-
wellian plasma characterized by the background electron
temperature 7'(f) and J; is the rf-driven current density.
Here we have assumed that |v, |»v, so thatin the absence of
any rf we can ignore runaways. Incorporation of this effect
merely requires the addition of the current carried by the
Dreicer runaway electrons in Eq. (17).

The rf-driven current density is given by Eq. (10) with
the A placed by the current Green’s function j and with
S, =S. Let us begin by writing j in unnormalized units.
The form for j given in Eq. (15) will be sufficiently accurate
for our purposes. Multiplying by gv, gives

qv,

)= L2 (1~ R @pw, wote) + aR ) (3 + L2 1),
m

,
where u = v/v,. Here j is now a dimensional quantity, but
W, and R remain dimensionless functions of a dimensionless
argument. In deriving this form for j we assumed that E and
n were constant. We now relax this constraint, allowing
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them both to vary on a time scale long compared to the
runaway collision time v,~ !. (Recall that S is also allowed to
vary on the same time scale.) We can then write; as

j(v,t_ t,; t)

= 28 RwyW, )8 — 1)
v, ()

+gR(u") (v" + % f E(S)dS),

where u’ = v/v, (¢t'). The additional parametric argument ¢
here has the same meaning as in Eq. (9). In this form,
j(v,t —t'; t) is the mean current carried by an electron at
time  given that it was traveling at velocity vat time¢'. From
Eq. (10) the rf-generated current density may now be writ-
ten as

Jelt) = J:dt'fa”v S(v,t')-%j(v,t—t’;t). (19)

In order to write J,; in a more useful form, we first define
a runaway density », (in electrons per unit volume). This is
given by
an,(t) 1
a  vlt)
with initial condition n,(t = 0) = 0. Substituting Eq. (18)
into Eq. (19), we obtain

(18)

f dvS(v,t)- 3‘9“- R () (20)

J(t) = J,e) + J,(t), (21a)
where

- 4 3 .9 -
Ji(t)= v,(t)fd v S(v,z) P (1 — R (u))#,(u), (21b)
aJ. (1) 7 3 a
= ;;-E(t)n,(t) +qfd vS(v,2) Zu—R(u)u",

(21c)
with J, (¢ = 0) = 0. In Egs. (20) and (21), u is normalized
in terms of the runaway velocity at time ¢, u = v/v, (¢).
These equations allow the current to be calculated by char-
acterizing the runaway population with just two state varia-
bles n, and J, . Equations (16), (17), (20), and (21) suffice
to give a detailed description of rf current ramp-up. In this
form, Eq. (17) is suitable for substituting into a transport or
ray-tracing code. Furthermore, it would be easy to modify
Eq. (20) to include a loss mechanism for the runaways. Rel-
ativistic effects on the runaways could be included in an ap-
proximate fashion by limiting |J, (¢)/gn, (¢)| to c, the speed
of light. Such effects could be treated in a more systematic
manner by modifying the term in large parentheses in Eq.
(18) to read vy (), where

v (t)=p,it)/my,
pylt)=mvy + | gE(ods

y=41+pi(t)/m*.
The resulting expression for j(v,t — ¢ '; ¢ ) is valid for v« ¢?
and v« ¢, Unfortunately, this is a significantly more cum-
bersome expression from which to calculate J; because, in
order to determine the state of the plasma at a particular
instant, the entire runaway distribution must be given (in-
stead of just n, and J, ).
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Vi. APPLICATIONS

The circuit equations written in Sec. V allow us to ex-
plore how J,; interacts with the electric field to yield an effi-
cient conversion of rf energy into poloidal magnetic field
energy. It is helpful to convert to extensive physical quanti-
ties by assuming that the plasma current is carried in a chan-
nel of area A in which the plasma properties are approxi-
mately uniform. Thus, the total current is given by I = AJ,
the total rf power deposited in the electrons by P,

= 27R,Ap (Where R, is the tokamak major radius), the
loop voltage by V' = 27R,E, etc. The plasma current is again
written as the sum of Ohmic and rf contributions:

I= V/RSp +Irf) (22)

where R, = 2mR /Ao is the plasma (Spitzer—Harm) resis-
tance. Faraday’s law relates the rate of change of the current
to the voltage,

V= —LI+ V., (23)

where L is the total plasma inductance, which for simplicity
we shall take to be constant, V,,, is the voltage induced by
the external coils (usually a combination of the Ohmic wind-
ings and the vertical field coils), and I = dI /dt. Multiplying
this equation by 7 and substituting for I from Eq. (22) gives

W=P, +Py—V*Rg, (24)

where W= } LI?is the poloidal field energy, P,, = V., [is
the power coupled from the external circuits, and P,
= — VI is the power coupled from the rf souce into electro-
magnetic energy. This equation describes the energy balance
for the poloidal magnetic field. The practical measure of the
efficiency of current ramp-up is

W_Pext — Pel _ V2/R§g_
Py J R ’

where P; is the total rf power injected into the plasma. The rf
power absorbed by the electrons P, is related to P, by
P,, = 5P, where 7 is the absorption factor. The determina-
tion of 57 is beyond the scope of this paper; presumably it can
be found by ray-tracing theories or by a power balance. The
overall picture of the flow of power in an experiment is as
follows. The rf power P,; is injected into the machine. Of this
a fraction 7 is absorbed by the resonant electrons; the rest
may be absorbed by the ions or by the vacuum vessel. A
fraction P,, /P, of this power is then converted into electro-
magnetic energy. Here P,,, acts as another source of poloidal
field energy, while the Ohmic dissipation ¥'?/Ry, acts as a
drain. From this discussion we see that P, /P;, describes the
“ideal” efficiency of rf current ramp-up. The practical effi-
ciency is expressible in terms of this efficiency 7 and V?/R s,

The determination of P, /P,, from Eq. (21)is complicat-
ed by the presence of runaways. Runaways are deleterious to
the ramp-up efficiency since their current is in the same di-
rection as E and so they subtract from P,,. For efficient cur-
rent ramp-up we must either avoid creating runaways by
making sure S is localized in that region of velocity space
where the runaway probability R is small (see Figs. 1 and 2),
or else take steps to lose the runaways. We can approximate-
ly treat these cases by taking R = 0 in Eq. (21) to give

(25)
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Py Sd*uS 9w, /du

P,  fduS-.u
Since this involves the ratio of two integrals over u, the result
is insensitive to the detailed form of S. In cases of practical
interest, we may assume that S is localized in u. Then, we
have
Py, _§-9W,/du

P, Sau
where u is the normalized velocity of the resonant electrons.

For lower-hybrid waves we have S = i, and the waves
interact with particles through the Landau resonance
@ — kv, =0, where @ and k| are the wave frequency and
parallel wave number. Furthermore, the typical perpendicu-
lar velocity of the resonant electrons equals the electron
thermal velocity, so that v, ~v, € v. Thus Eq. (26) is to be
evaluated with u; = w/k v, and u; = 0. This gives

P, OW./3u

P, u
This efficiency is plotted in Fig. 7(a). Approximate fits for
this function are given in Appendix B.

On the other hand, for electron-cyclotron waves that
interact through the Doppler-shifted cyclotron resonance
@ — k) vy = IQ), where  is the cyclotron frequency and / is
the harmonic number, we have S = i, . In this case we evalu-
ate Eq. (26) atu; = (@ — IQ)/k v, and u; = 0 to give

Py OW./3u— (1/u))OW,/

(26)

. (27a)
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FIG. 7. Efficiency for lower-hybrid current drive (a) and for electron-cyclo-
tron current drive (b) from Egs. (27).
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which is plotted in Fig. 7(b).

Using Eqgs. (27) it is possible to identify regions of high
conversion efficiency of wave energy to electric energy, given
the restriction of R small. Additionally, if the Ohmic losses
V*/R sp aresmall, then by Eq. (25) we see that the conversion
of wave energy to poloidal field energy can be of high effi-
ciency. This, in fact, is what has been achieved on the PLT
experiment, where conversion efficiencies of over 25% have
been reported.*

Animportant practical consequence of the circuit equa-
tions derived here is that fast ramp-up rates, i.e., large 7, are
possible at high density. In fact, these fast ramp-up rates are
necessary for high-energy conversion efficiencies at high
density. This can be seen as follows. The efficiency P,, /P, is
a function of the dimensionless parameter u, depending, in
addition, only weakly on Z. For a given machine and a given
wave phase velocity, the parameter u; depends only on the
ratio E /n, and the ramp-up rate I depends only on the dc
electric field E. Thus the efficiency depends only on the ratio
of I to n. It has been observed experimentally on the PLT
experiment that high efficiency of converting rf energy to
magnetic field energy is possible at a low plasma density.
Thus we can predict that a similar high efficiency is possible
in the event that the density and the ramp-up rate are scaled
up together. In fact, for large ramp-up rates, high density can
actually be desirable in that it impedes the production of
runaways. Note that this window of desired density for a
given ramp-up rate is counter to our intuition derived from
steady-state considerations, where the larger the density the
less the current-drive efficiency.

There are several optimizations that one might wish to
achieve in the ramp-up problem. One is to maximize the
energy coversion efficiency P, /P, . A second is to mimimize
the ramp-up time Ty =1 /I. The minimization of capital
costs for the rf system, however, may demand that we mini-
mize P, the rf power required to ramp-up a given current.

We can express this more precisely with some conven-
ient formulas. In the absence of the external source V,,, the
ramp-up rate may be written using Faraday’s law as

SE_ MA
InRy/a sec ’
where a tokamak inductance L=~u,R,InR,/a was as-
sumed, and where E is the dc electric field in units of V/m.
Note that the ramp-up rate depends linearly on E and is
almost independent of geometry (In Ry/a=1). The amount
of dissipated rf power required can then be written as

2 -1
Pi= 1il (ﬁ> , (29)
7 Tramp P, in

if we neglect both ohmic losses (¥2/R sp ) and the external
source P,,.. Thus, in extrapolating results to larger toka-
maks (higher } LI?), we can maintain linear (in the required
stored energy) power requirements, with the same ramp-up
time and the same efficiencies, if the density scales linearly
with 7 and hence with /. Here the wave phase velocities also
remain the same, and in the event of the same temperatures,
the physics of the damping may be expected to be very simi-
lar, so that the percentage of incident rf power that is ab-
sorbed, 7, remains constant, too.

~
~

(28)
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For example, in the PLT experiment with n~2X 10"
em ™3, T=1keV, w/k) ~6v, = } c, we find reported ramp-
up rates of / = 120 kA/sec, or E~24 mV/m. Here u =~ 1.4,
and ideal efficiencies of about 33% at Z = 1 may be expected
with little runaway production, consistent with experimen-
tal data. Also a somewhat higher Z would be consistent with
the data, but then only if the confinement of runaways were
not perfect.

For reactor-grade tokamaks, say LI?~400 MJ and
I=~10MA, a ramp-up time longer than that in PLT is desir-
able in order to minimize P and the capital cost of the rf
system. For a 30 sec ramp-up time, a density of 5X 10"
cm™3 renders the ratio / /n as in the PLT experiment. Em-
ploying a similar spectrum of waves (w/k | = § ¢)ina plasma
of temperature also similar to the PLT experiment (T'=1
keV) implies a similar 7 (about 0.7). Thus using Eq. (29), we
see that P =40 MW would be required.

To summarize the tradeoffs here, we note that while
P,,/P,, is minimized by considering only the ratio I /n, the
minimization of P, requires that T,,,,, be large. Thus al-
though very quick ramp-up rates are indeed achievable at
high density, the capital costs for such a system are propor-
tionately larger, too. Balancing the desires for a quick ramp-
up against those for low capital costs (low P) points to a
parameter range of moderate density. Efficient ramp up is
only achieved when, in addition to the above restrictions, the
temperature is moderate, since at high temperatures, V'%/
Ry, losses, neglected in Eq. (29), begin to dominate. The
regime where these Ohmic losses dominate may be identified
by writing

v: _ LI*> L/Rs,

RSp - Tra.mp Tramp

These losses represent only small corrections when V?2/
R, <Py, or, using Eq. (29), when

T ramp P el
L/Rs, Py

For the reactor-grade example, P;/P,, =1, 7=0.7, the
above inequality requires that the ramp-up time be longer
than about § of the L /R 5, time. This restricts the tempera-
ture to somewhat less than 2 keV.

Restricting the temperature during a period of intense rf
injection (perhaps 40 MW) requires a small heat confine-
ment time during the start-up operation. In the above exam-
ple, this may be as small as 30 msec. Poor confinement dur-
ing the start-up phase may be helpful from the standpoint of
runaway buildup, too. Even a small percentage ( ~1%) of
reverse runaways>> can seriously impede ramp-up if the

runaways are well confined. If the runaways are poorly con- -

fined, then higher percentages may be tolerated, allowing
higher ramp-up rates and, consequently, higher energy con-
version efficiencies for a given density.

We are led thus to the following typical picture of rf
ramp-up for pulsed tokamak operation. Start-up can pro-
ceed in a low-density plasma®* where the rf power is also
used to initiate the plasma. Density and rf power, and the
ramp-up rate, are increased concomitantly as the plasma is
brought to interesting densities 10'°*~10' cm 3. During this
phase the temperature is purposefully kept low, possibly
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through a deliberate degradation of the confinement of both
runaway and thermal electrons. Hence the current is pro-
grammed to reach a large value prior to the density, and both
reach large values prior to the temperature. The final step, in
which the reactor is brought to reactor-grade temperature,
occurs after the current is ramped up and as a result of ceas-
ing the deliberate degradation of confinement.

VIl. CONCLUSIONS

In this paper we have written down a set of circuit equa-
tions that describe the dynamics of an rf-driven plasma. In
arriving at these circuit equations, we systematically intro-
duce approximations with a goal of characterizing the driven
plasma by a small number of functions of few variables that
retain the essential physics. Greater accuracy, possible at the
price of more complex circuit equations, may be obtained as
a natural extension of the development here. The identifica-
tion and calculation here of a minimal set of transport func-
tions, however, provided a suitable and manageable descrip-
tion for a large class of important problems.

The calculations of the runaway function R and of the
energy conversion function W, together pinpoint the pre-
ferred region for tokamak ramp-up operation. These func-
tions depend only on the dimensionless parameter u. The
separate contributions of runaway and stopped currents
may be described using these functions of a single variable.
The constitutive relations thus obtained are given by Eqs.
(21). These equations are in a form both suitable for imple-
mentation in a transport code and amenable to obvious
modification in the event that more complex runaway mod-
els are desired.

There are several caveats to bear in mind in using these
formulas. First, the time scale for variation of the dc electric
fields has been assumed long compared to other scales of
interest, such as the particle deceleration times. A violation
of this scale separation would affect the normalizations
through v, . Second, knowledge of the rf spectrum is unlikely
to be complete. This knowledge is necessary to give S, the rf-
induced flux. Even if the incident rf energy is followed by
ray-tracing codes, it remains possible that other waves may
be present. These other waves might arise either because of
asymmetries in the particle distribution functions or nonlin-
ear effects associated with the incident spectrum. Third, par-
ticle transport across field lines was neglected in comparison
to the effects along field lines. The neglect of these effects is
possible for stopped electrons if they are stopped before they
reach a flux surface with significantly different conditions
(v, different). For runaway electrons, these effects are al-
ways important in that they provide a model for the runaway
loss. As discussed after Egs. (21), such a model may be in-
cluded through a natural modification of Eq. (21c). In the
absence of one particularly compelling model, at present, for
runaway loss we have left the modification of Eq. (21c) asan
open issue.

Finally, we should note that some of the most powerful
conclusions of this paper occur in certain special cases. It is
often the case that the rf spectrum is not only known, but
also localized, which enables a particularly simple evalua-
tion of the conversion efficiency, as in Egs. (27). In the event
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of moderate electric fields, or spectra localized at moderate
phase velocities, it may be that R = 0 (no runaway produc-
tion), and an accurate runaway loss model would not be
needed. In the event that runaways are confined well, the
spectrum must be chosen carefully to assure that R = 0.
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APPENDIX A: LANGEVIN EQUATIONS

Here we show that the conditional probability distribu-
tion g(u,7 ; w’) for Egs. (4) satisfies Eq. (3). The derivation
follows those given in Refs. 18 and 25. Because the process
described by Egs. (4) is a Markoff process, g satisfies the
Smolucowski equation,'®

glur+Ar;u') = I dn" g(wAr;u”)gw",7;u),

(Al)

for all 7> 0 and Ar> 0. Let us define
r(wu,Ar) =g(u+ w,A7; u).
Subtracting g(u,7; u') from Eq. (A1) gives
glu,r + Ar;u’) — glu,7; u')
= fd:"u” [Hu —u”",A7ig(u",7; W)
— rlu —u”,u,A7iglu,7; w)], (A2)

where, because of the normalization condition for probabili-
ties, the second term in the integral may be reduced to
glu,7; w'}. If we change the variable of integration to
w =u — u”, the right-hand side of Eq. (A2) becomes

TABLE 1. Coefficients for approximation to R(x, ¢t = 1).

f d*w[riw,u — w,Arlg{u — w,7; u) — Aw,u,A7glu,7; w)] .

For small A7, the function #{w,u,A7) is highly localized about
w = 0, We may therefore expand the first term in the inte-
gral, assuming that w is much smaller than u, to give

riw,u — w,Arig{u — w,7; u')
=Hw,u,A7)gu,7; o)
a
du
1

+ —ww:
2

— W

riw,n,A7)glu,7; ')

2
afau rw,u,A7r)gu,r; w).

Using this approximation in Eq. (A2), integrating by parts,
dividing by Ar, and taking the limit A7 - 0, we find as the
equation for g{u,7 ; u’),

92
dudu

a a
Lg=L Ag+

A3
ar du (A3)

:Bg,

where

A(u) = lim — (An)/Ar7,
Ar—>0

B(u) = Alim0 (AuAu)/2Ar,
and

{Au) = f wr(wnAr)d3w,

{AuAu) = f wwr(wunA7r)d>w.

Thus (Au) is the average value of u(r + A7) — u(r) given that
u(r) = u {and similarly for (AuAu)) assuming that A7 is suf-
ficiently small that u does not change appreciably. We then
obtain

VA ap a, a, a, b, b,

1 — 3.680 63 4.239 13 —4.558 94 —0.397 55 — 122774 1.414 50
2 —4.976 36 — 16.090 15 0.831 88 0.217 37 6.846 15 —0.986 49
5 —4.276 87 —4.336 29 0.303 38 0.056 97 321315 —0.47749
10 - 4.945 97 — 1.53482 0.101 12 0.030 87 245288 —0.368 96

TABLE 11. Coefficients for approximation to W {u, gz = 1).

z a, a, a, b, b, by

1 0.166 12 —0.01495 0.007 75 0.371 36 0.022 40 001645
2 0.142 00 — 0.040 48 0.011 45 0.122 53 0.003 84 0.024 40
5 0.098 80 —0.05152 0.011 13 —0.194 84 0.005 59 0.023 62
10 0.065 37 —0.038 95 0.007 38 —0.324 56 0.027 97 0.01526
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TABLE II1. Coefficients for approximation to W, (u, £ = — 1).

z ay as a, as

1 —0.16483 —0.13420 0.15346 —0.243 14
2 —-0.1418 —0.09297 006661 —0.12870
5 —0.09975 —0.04781 0.00606 —0.03545
10 —0.06651 002797 —0.00247 -—0.00934

(Au) = — J:+M <——1— +.u(1")>df’

u(r')?
~ — (1/u* +p)Ar,
+ At 2
(Ap) =f (A(r’) —l—"—'l—‘(f'—))df

u(r')

2
z—(l+32/t+ L—p )AT,
u u

+ A7 + Ar
(Apbu) = J" f (A()A("))dr dr” + O(AT)

=[(1+2)/](1 —p*)Ar,
(Aulu) = (Aulp) = (AuAu) = O(AT?) .
Here we have made use of the properties of 4 given in Egs.

(5). Writing Eq. (A3) in spherical coordinates and substi-
tuting for the nonzero components of A and B, we obtain

d 1 8, d a2
O =t 9 g+ % 4g4+ % B
ERL A I W "g+¢9,u "g+¢9;u2 u€
d 1 4 1+2Z 4 a d
=9 g4l 2 - Ly,
8u"g+u2 ou 2u? 8,u( '“)ayg

(A4)

This is the same equation as Eq. (3). Furthermore, from the
definition g as a conditional probability, the initial condition
for Eq. (A4) is also the same as for Eq. (3), namely,
gln,7; w') = 6{u — w'). '

APPENDIX B: NUMERICAL FITS

In this Appendix we give approximations for some of
the important functions we have calculated. These are suit-
able for incorporating into modeling codes. The approxima-
tions were found by choosing a suitable analytic form con-
taining several undetermined coefficients and adjusting
those coefficients in order to minimize the maximum relative
error. The technique for carrying out this procedure is de-
scribed in Hastings’ classic work.2® The fits were made to the
numerical data presented in Sec. IV. These data contain er-

TABLE 1V. Coefficients for approximation to (W, /du)/u forp = 1.

rors because of the numerical methods used. The main
source of error is because of the finite size of the numerical
mesh and it is estimated that this introduces errors on the
order of a percent. However, near u = 0, the relative error in
the numerical data for W, and its derivative becomes large
because W, = O(u*). Thus for u <0.5, the fits were made
using the following analytical approximation instead of the
numerical data:

put (24 Z+3u)u’
Z+5 33+2)5+2)
2((24 + 19Z + 3Z %) + (9 + Z)’]u®
B+2Z)5+2)(T+32)(9+2)
— [1041 + 1864Z + 1189Z % + 316Z® + 30Z*

+ 10(417 + 497Z + 18122 + 21Z3)p?
+5(9+ Z2)(13 4+ 3Z)u*1u'°/[5(2 + 2) (3 + 2)
X(5+2)(1+32)(9+Z)(13 4+ 32)].

This result was obtained by solving Eq. (12) for small # using
MACSYMA.?" (The first two terms in this expansion are
those derived by Fisch.'4)

For each of the functions approximated, we give the
analytic form of the approximation, the range in which it is
valid, a table of coefficients, and the maximum relative error.
The approximations should not be used outside the range
given. Also, note that the relative error quoted is the error in
fitting the approximation to the numerical data, which are in
error by about a percent.

For = 1 and 1.4 <u < 8, the runaway probability R is
approximated by

W, =

3}_oalu—1Y
Rupu=1)= CXP(———EE_, B — 1) ) ’

where b, = 1 and the other coefficients a; and b, are given in
Table 1. The maximum relative error is 1%. For u = 1 and
1 < u < 1.4, the same approximation may be used with small
absolute error but large relative error. For # < 1 and all u we
have R = 0 identically.

Foru = 1and 0 < 4 < 5, the energy imparted to the elec-
tric field W, by stopped electrons is approximated by

zf_ g2
Wi, p=1)= 2220
3} _o bu*
where b, = 1 and the other coefficients a; and b, are given in
Table II. The maximum relative error is 2%. Foru = — 1

and O <u < 1, W, is approximated by

5
Wu=—1)=Y3 au”,
. i=2

z a, a, by b, b,y
1 0.664 45 ~0.360 32 0.073 28 0.177 69 —0.254 52 0.07278
2 0.567 60 —0.389 84 0.086 34 —0.040 19 —0.246 73 0.085 08
5 0.399 06 —0.32879 0.076 70 - 0.282 81 —0.16275 0.074 36
10 0.27028 —0.232 61 0.05272 —0.391 40 —0.07526 0.049 81
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TABLE V. Coefficients for approximation to (W, /du)/u foruy = — 1.

V4 a, a, a, a,
1 —0.63673 —1.399 60 3.376 62 — 4.236 84
2 —0.55777 --0.80763 143144 —2.038 66
5 —0.39704 —0.33811 0.236 07 —0.51011
10 —0.26600 -—0.17342 0.018 96 —0.13349

where the coeffients a; are given in Table III and the maxi-
mum relative error is 1.5%.

For u = 1 and 0 < u < 5, the function (3W, /du)/u is ap-
proximated by

19 2 au”
LW up=1)=2
u Ju e =1) 2o bu®
where b, = 1 and the other coefficients a; and b, are given in
Table IV. The maximum relative error is 5%. Foruy = — 1

and 0 <u < 1, (W, /du)/u is approximated by

"l"i Wp=—1)= i aiuzi’
u ou o]

where the coefficients g; are given in Table V and the maxi-
mum relative error is 3%.
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